Compass | Precision technique

Recommendations - Products and their use

Telescopic crowns

Precious and non-precious metal alloys and titanium

Tapered crowns

Precious and non-precious metal alloys, titanium and ceramics

Abutments

Titnium/Non-precious metals

Very fine milling and polishing

Precious and non-precious metal alloys and titanium

Channel/shoulder, channel/shoulder/pin and T-attachments

Precious and non-precious metal allovs

Shank types

We recommend tools with a shank diameter of 3.00 mm (ISO 123).

Compared to tools with a shank diameter of 2.35 mm, the chucking surface is larger, which provides:

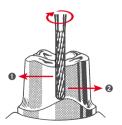
- Greater chucking force
- Improved safety

Increased precision of the chucks when clamping tools with a diameter of 3.00 mm:

· Improved radial runout accuracy

Features of the milling device

- Precision spindle Maximum concentricity
- deviation 0.02 mm
- Speed range: 1.000 - 25.000 rpm
- Shank types: 103, 104, 123, 124


Auxiliaries

- High-efficiency milling oil 9758
 guarantees optimum
- surfaces
 protects the tools
- Wax For ultra-fine milling
- Waxit
 Prevents clogging

- Long-fibre cotton
 For ultra-fine grinding and polishing
- Diamond paste $7\,\mu m$, 9301 For ultra-fine grinding

Milling direction

- 1 + 2 Milling direction of the tool
- Milling in rotational direction:
 <u>in</u> clockwise direction
- Milling in contra-rotational direction: anti-clockwise rotation

Material

	Material					
	Precious metal	Precious metal - reduced Non-precious metal		Titanium	Ceramic	
Results Characteristics	Easy to cut → Flow chips Low resistance to penetration → Reduced material hardness	 Hard to cut → discontinuous chips High resistance to penetration → Increased material hardness 		Harder to cut → Tends to clog up the instrument, material builds up on the blades High resistance to penetration		Hard to cut Very high resistance to penetration → hard, brittle, temperature sensitive
	• Very shiny, smooth surfaces (R, < 1 µm)	 Fine surfaces (R, 1 - 1,5 µm) Increased durability of the instruments thanks to speed reduction 		 Fine surfaces (R, 1 - 1,5 μm) Less accumulation of material on the blades thanks to the reduction of the speed 		 very shiny, smooth surfaces (R_c < 1 μm)

General information

Recommended tools/optimum speeds

	noconimonada todio, opinimam opedad					0	Oopt. = optimum speed/rpm	
	Precious metal		Semi-precious metal		Non-precious metal/titanium		Zirconium oxide	
	E		Е		GE+XE			
Rough work	Oopt. 10.000		Oopt. 6.000		Oopt. 6.000		-	
	F		S		S		M	
Fine work	Oopt. 10.000		Oopt. 6.000		€opt. 6.000		⊙ opt. 160.000	
	F		S		S		F	
Ultra-fine work	Oopt. 3.000		€ opt. 3.000		⊙ opt. 3.000		⊙ opt. 160.000	
	Cutters	C	Cutters		Cutters			
Pre-polishing	-		Oopt. 6.000		Oopt. 6.000		-	
							EF	
Polishing	€ 6.000		Oopt. 6.000		Oopt. 6.000		Oopt. 160.000	
High-shine							UF	
polishing	Ook 6.000		Oopt. 6.000		Oopt. 6.000		Oopt. 160.000	
	Polishers	F	Polishers		Polishers		Galvanic diamond abrasives	

Contouring

- Use in the laboratory turbine, in the milling device
 Supply water cooling
 - · Apply low contact pressure

Diamond abrasives, medium

- ZR373M.025, 0° ZR374M.025, 1° ZR374M.025, 1°
- ●○ **ZR986M**.012, 0° **●○ ZR371M**.025, 2°

⊕opt. **160.000 rpm**

Zirconium oxide

Ultra-fine grinding

- Use in the laboratory turbine, in the milling device
 - · Supply water cooling
 - · Apply low contact pressure

Diamond abrasives, fine

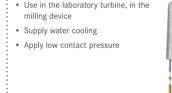
- ●○ **ZR373F**.025**,** 0° ●○ **ZR374F**.025**,** 1°
- ●○ **ZR986F**.012, 0° ●○ **ZR371F**.025, 2°

Oopt. 160.000 rpm

Primary crowns

made of zirconium oxide

· Use in the laboratory turbine,

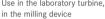

- · Supply water cooling

Diamond abrasive, ultra-fine

OO ZR373UF.025. 0° OO ZR374UF.025. 1°

OO ZR986UF.012. 0° OO ZR371UF.025, 2°

One 160,000 rpm



OC ZR374EF.025, 1°

OC ZR371EF.025, 2°

O ZR986EF.012, 0° Oc. 160,000 rpm

High-shine polishing

- · Apply low contact pressure

For optimum results, carry out all 4 steps!

7irconium oxide

Diamond abrasive, extra-fine

OO ZR373EF.025, 0°

Milling of wax

- · Lubricate cutter with Waxit
- · Milling in rotational direction
- The surface achieved is very fine, so that the use of the wax scaler 266R can be omitted

Rough milling

- · Lubricate cutter with milling oil
- Milling in contra-rotational direction

H 364 RA.010/015/023 TC Wax cutter

Oopt. 3.000 rpm

Wax

H 364 RE.010/015/023 Coarse TC cutter for precious metal

Oopt. 10.000 rpm

Precious metal

Telescopic crowns

made of precious metal alloys

Fine milling

- Lubricate cutter with milling oil
- Milling in contra-rotational direction

Ultra-fine milling/polishing

see page

O H 364 RF.010/015/023 Fine TC cutter for precious metal

€ opt. **10.000 rpm**

Precious metal

0

Milling of wax

- · Lubricate cutter with Waxit
- · Milling in rotational direction
- The surface achieved is very fine, so that the use of the wax scaler 266 R can be omitted

TC wax cutter

Oopt. 3.000 rpm

Wax

Rough milling

- Lubricate cutter with milling oil
 - · Milling in contra-rotational direction

● H 364 RGE.010/015/023

●● H 364 RXE.010/015/023

Coarse TC cutter for non-precious metal and titanium

Oopt 6.000 rpm

Non-precious metal/titanium

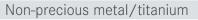
Telescopic crowns

made of non-precious metal alloys/titanium

Fine milling

- Lubricate cutter with milling oil
- Milling in contra-rotational direction

Ultra-fine milling/polishing


• see page

H 364 R.010/015/023 Fine TC cutter for non-precious

and semi-precious metal and titanium

Oopt. 6.000 rpm

Milling of wax

- Lubricate cutter with Waxit
- · Milling in rotational direction
- The surface achieved is very fine, so that the use of the wax scaler 355 can be omitted

Rough milling

- Lubricate cutter with milling oil
 - Milling in contra-rotational direction

H 356 RA, 1°/2°/4°/6° TC wax cutter

€ 3.000 rpm

Wax

H 356 RSE, 1°/2°/4°/6° Coarse TC cutter for precious metal

Oopt. 10.000 rpm

Precious metal

Tapered crowns

made of precious metal alloys

Fine milling

- Lubricate cutter with milling oil
- Milling in contra-rotational direction

Ultra-fine milling/polishing

see page

O H 356 RF, 1°/2°/4°/6° Fine TC cutter for precious metal

Oopt. 10.000 rpm

Precious metal

Milling of wax

- Lubricate cutter with Waxit
- · Milling in rotational direction
- · The surface achieved is very fine, so that the use of the wax scaler 355 can be omitted

Rough milling

- · Lubricate cutter with milling oil
- · Milling in contra-rotational direction

● H 356 RGE, 2°/4°/6°

● H 356 RXE, 1°/2°

Coarse TC cutter for non-precious metal, titanium

Ocpt. 6.000 rpm

H 356 RA, 1°/2°/4°/6° TC wax cutter

Oopt. 3.000 rpm

Wax

Non-precious metal/titanium

Tapered crowns

made of non-precious metal alloys/titanium

Fine milling

- Lubricate cutter with milling oil
- Milling in contra-rotational direction

Ultra-fine milling/polishing

H 356 RS, 1°/2°/4°/6° Fine TC cutter for non-precious and semi-precious metal and titanium

Oopt. 6.000 rpm

Non-precious metal/titanium

- Use in the micro-motor, in the milling device · Lubricate cutter with
- milling oil
- Soak cotton wool in milling oil
- ●● H364KRXE, 0° ●● H347RXE, 2°

- · Use in the micro-motor,
 - in the milling device · Lubricate cutter with milling oil
 - · Soak cotton wool in milling oil

H364KRS, 0° H347RS, 2°

Oopt. 6.000 rpm

€ 6.000 rpm

Titanium/non-precious metal

Implant abutments

made of titanium/non-precious metal alloys

Coarse cutters

- · Milling in contra-rotational direction
- Equally suitable for primary crowns, bars etc.

Fine cutter

- · Use in the laboratory turbine with water cooling
- · Milling in contra-rotational direction
- Equally suitable for primary crowns, bars etc.

Handy hint:

For optimum results use with spray cooling

- H373Q, 0°
- H371Q, 2°
- H376Q. 4°

€0 160,000 rpm

H376F. 4°

160.000 rpm

Titanium/non-precious metal

Work with last bur used

- · Fill chip spaces with wax
- Lubricate cutter with milling oil
- Milling in contra-rotational direction

Polishing

Work with last bur used

- Cover bur with cotton wool
- Apply diamond paste (7µm)
- Soak cotton wool in milling oil

High-shine polishing

Work with last bur used

- Cover bur with fresh cotton wool
- Soak cotton wool in milling oil

Oopt. 3.000 rpm

€ opt. 3.000 rpm

€ 3.000 rpm

Oc. 6.000 rpm

Very fine milling/polishing

with cotton wool or special polishers for use in the milling device

€0.000 rpm

€0.000 rpm

Milling of the shoulder

- · Lubricate cutter with milling oil

H 294.029

TC shoulder cutter

€ 3.000 rpm

Precious metal

Channel/shoulder and channel/shoulder/pin attachments

made of precious metal alloys

- · Axial feed with milling spindle
- · Punch marking to centre the twist drill

- · Lubricate drill with milling oil
- · Drill with low pressure
- · Remove chips frequently (lift drill)

Fine work of the bore hole

- · Lubricate drill with milling oil
- · Drill with low pressure
- · Remove chips frequently (lift drill)

H 370.009 TC Centring bur

€0 5.000 rpm

H 206.007/010/012 TC spiral drill

Oct. 10.000 rpm

H 210.007/010/012 TC tube bur

Oct. 10.000 rpm

Friction post bore

- milling spindle
- → Punch marking to centre the twist drill

milling oil Drill with low

Drilling

- pressure Remove chips frequently (lift drill)
- Axial feed with milling spindle

Adjusting the shoulder

- · Lubricate drill with milling oil
- · Axial feed with

Milling of the T-groove

- · Feed (A) with feed slide (0.05 mm at max.)
- Axial feed (B) with milling spindle

H 294.029 TC shoulder cutter H 33 XLO 009

TC groove cutter €0m 3.000 rpm

H 370.009 TC centring bur

€0 5.000 rpm

€0.000 rpm

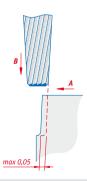
€0m 3.000 rpm

Non-precious metal alloy

"T" attachment

made of non-precious metal alloys

Fine milling


of the T-groove

- Feed (A) with feed slide (0.05 mm at max.)
- Axial feed (B) with milling spindle
- · Lubricate the drill with milling oil
- · Fill chip spaces with wax

H 33 XLQ.009/012/014/017 TC groove cutter

Oopt. 2.000 rpm

6 Milling

of the passage

- Feed (A) with feed slide (0.05 mm at max.)
- · Axial feed (B) with milling spindle

H 33 XLQ.009 TC groove cutter

€ opt. 3.000 rpm

Non-precious metal alloy

German utility model DE 20 2008 006 553

- Two-piece construction, suitable for cylindrical and slightly tapered laboratory implants (clamping range: 1.0 - 6.5 mm)
- For use on a model table

Milling block

for clamping laboratory implants and retention pins

Dressing block

for polishers

- Dressing of the radius on the upper side of the block
- Dressing the polisher to the desired angle at the appropriate diamond coated, inclined surface of the block
- Perform rotary movements in order to avoid scratches on the polisher

150.461F

2 Smoothing polishers

- · Smoothing of the radius
- Smoothing of the circumferential surface of the polisher in order to prevent the transmission of scratches onto the workpiece

Attention: Very slim polishers should only be dressed on block 150.461F!

Accessories

Komet Dental

Gebr. Brasseler GmbH & Co. KG Trophagener Weg 25 · 32657 Lemgo Postfach 160 · 32631 Lemgo · Germany

Verkauf Deutschland:

Telefon +49 (0) 5261 701-700 Telefax +49 (0) 5261 701-289 info@kometdental.de

www.kometdental.de

Export:

Telefon +49 (0) 5261 701-0 Telefax +49 (0) 5261 701-329 export@kometdental.de www.kometdental.de Komet Austria Handelsagentur GmbH Hellbrunner Straße 15 5020 Salzburg · Austria

<<<<<

Telefon +43 (0) 662 829-434 Telefax +43 (0) 662 829-435

info@kometdental.at

